Geometrically nonlinear L beam model

Geometrically nonlinear L beam model

Contents

We consider an example as follows. The structure consists of two beams connected via a revolute joint. A harmonic excitation is applied at the midspan of the horizontal beam.

This example is motivated by the internally resonant T-beam structure described here

Dou, S., Strachan, B. S., Shaw, S. W., & Jensen, J. S. (2015). Structural optimization for nonlinear dynamic response. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2051). <https://doi.org/10.1098/RSTA.2014.0408>

We model this structure as a union of two straight von Karman beams which results in DAE as follows

where

and the linear configuration constraints denote the continuity condition of displacements at the joint.

Finite element code taken from the following package:

Jain, S., Marconi, J., Tiso P. (2020). YetAnotherFEcode (Version v1.1). Zenodo. http://doi.org/10.5281/zenodo.4011282

Generate model

clear all
nElements1 = 10;
nElements2 = 14;
[B,A,fnl,fext,outdof] = build_model_1st(nElements1,nElements2);
n = size(A,1);
disp(['Phase space dimensionality = ' num2str(n)])
Building FE model
Assembling M,C,K matrices
Applying boundary conditions
Getting nonlinearity coefficients
Loaded tensors from storage
Total time spent on model assembly = 00:00:09
Assembling external force vector
Building FE model
Assembling M,C,K matrices
Applying boundary conditions
Getting nonlinearity coefficients
Loaded tensors from storage
Total time spent on model assembly = 00:00:00
Assembling external force vector
Phase space dimensionality = 146

Dynamical system setup

order = 1;
DS = DynamicalSystem(order);
set(DS,'B',B,'A',A,'fnl',fnl);
set(DS.Options,'Emax',8,'Nmax',10,'notation','multiindex')

due to the added configuration constraints, the updated damping matrix is not propotional anymore

set(DS.Options,'RayleighDamping',false,'sigma',0.5);

add forcing

epsilon = 1e-1*1e1;
kappas = [1; -1];
coeffs = [fext fext]/2;
DS.add_forcing(coeffs, kappas, epsilon);

Linear Modal analysis and SSM setup

[V,D,W] = DS.linear_spectral_analysis();
 The first 8 nonzero eigenvalues are given as 
   1.0e+02 *

  -0.0004 + 0.2266i
  -0.0004 - 0.2266i
  -0.0015 + 0.4534i
  -0.0015 - 0.4534i
  -0.0039 + 0.7344i
  -0.0039 - 0.7344i
  -0.0154 + 1.4693i
  -0.0154 - 1.4693i

Setup for SSM Computation

S = SSM(DS);
set(S.Options, 'reltol', 0.5,'notation','multiindex');
resonant_modes = [1 2 3 4]; % choose master spectral subspace
mFreq = [1/2 1];            % internal resonance relation vector
order = 5;                  % SSM expansion order

SSM_epSweeps:

continuation of FRC w.r.t at sampled

set(S.FRCOptions,'sampStyle', 'cocoBD');                                % sampling style
set(S.contOptions, 'PtMX', 200, 'h_max', 50,'h_min',0.01,'MaxRes',1);   % continuation setting
set(S.FRCOptions, 'nCycle',5000, 'initialSolver', 'fsolve');            % initial solution scheme
set(S.FRCOptions, 'coordinates', 'cartesian');                          % two coordinate representations
set(S.Options,'contribNonAuto',false);
epsSamp = [1e-1 5e-1 1]*epsilon;
freqRange = [0.8 1.2]*imag(D(3));
S.SSM_epSweeps('sweeps',resonant_modes,order,mFreq,epsSamp,freqRange,outdof);
The master subspace contains the following eigenvalues
 
lambda1 == - 0.0366857 + 22.6627i
 
lambda2 == (-0.0366857) - 22.6627i
 
lambda3 == - 0.146825 + 45.3379i
 
lambda4 == (-0.146825) - 45.3379i
 
(near) outer resonance detected for the following combinations of master eigenvalues
 They are in resonance with the following eigenvalues of the slave subspace 
 
1*lambda1 + 0*lambda2 + 1*lambda3 + 0*lambda4 == - 0.385295 + 73.4437i
 
0*lambda1 + 1*lambda2 + 2*lambda3 + 0*lambda4 == - 0.385295 + 73.4437i
 
3*lambda1 + 0*lambda2 + 0*lambda3 + 0*lambda4 == - 0.385295 + 73.4437i
.
.
.

0*lambda1 + 0*lambda2 + 3*lambda3 + 0*lambda4 == - 1.542136 + 146.927i
 
2*lambda1 + 0*lambda2 + 2*lambda3 + 0*lambda4 == - 1.542136 + 146.927i
 
0*lambda1 + 0*lambda2 + 4*lambda3 + 1*lambda4 == - 1.542136 + 146.927i
.
. 
.
sigma_out = 42
(near) inner resonance detected for the following combination of master eigenvalues:
 
0*lambda1 + 1*lambda2 + 1*lambda3 + 0*lambda4 == lambda1
 
1*lambda1 + 0*lambda2 + 1*lambda3 + 1*lambda4 == lambda1
 
2*lambda1 + 1*lambda2 + 0*lambda3 + 0*lambda4 == lambda1

.
. 
.

2*lambda1 + 0*lambda2 + 0*lambda3 + 2*lambda4 == lambda4
 
0*lambda1 + 0*lambda2 + 2*lambda3 + 3*lambda4 == lambda4
 
0*lambda1 + 4*lambda2 + 1*lambda3 + 0*lambda4 == lambda4
 
.
.
.
 
sigma_in = 42
Due to (near) outer resonance, the exisitence of the manifold is questionable and the underlying computation may suffer.
Attempting manifold computation
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 3.31E-01 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 5.97E-01 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 1.23E+00 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 2.21E+00 MB

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.


 Run='sweepseps.ep': Continue equilibria with varied epsilon.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          1.13e-13  9.08e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps         Rez1         Rez2         Imz1         Imz2           om
    0  00:00:00   9.0818e+01      1  EP      1.0000e+00   0.0000e+00  -5.2555e+01   0.0000e+00   1.8253e+01   4.5338e+01
    1  00:00:01   9.0818e+01      2  UZ      1.0000e+00   0.0000e+00  -5.2555e+01   0.0000e+00   1.8253e+01   4.5338e+01
    9  00:00:01   7.6159e+01      3  UZ      5.0000e-01   0.0000e+00  -3.9718e+01   0.0000e+00   1.7164e+01   4.5338e+01
   10  00:00:01   7.0342e+01      4          3.5187e-01   0.0000e+00  -3.4069e+01   0.0000e+00   1.6894e+01   4.5338e+01
   14  00:00:02   5.5740e+01      5  UZ      1.0000e-01   0.0000e+00  -1.6341e+01   0.0000e+00   1.6083e+01   4.5338e+01
   15  00:00:02   5.4852e+01      6  EP      9.0000e-02   0.0000e+00  -1.4962e+01   0.0000e+00   1.5898e+01   4.5338e+01

 STEP      TIME        ||U||  LABEL  TYPE           eps         Rez1         Rez2         Imz1         Imz2           om
    0  00:00:02   9.0818e+01      7  EP      1.0000e+00   0.0000e+00  -5.2555e+01   0.0000e+00   1.8253e+01   4.5338e+01
    6  00:00:02   9.3229e+01      8  EP      1.1000e+00   0.0000e+00  -5.4548e+01   0.0000e+00   1.8478e+01   4.5338e+01

 Run='sweepseps1.ep': Continue equilibria with varied omega at eps equal to 1.000000e-01.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          4.04e-14  7.19e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:00   7.1850e+01      1  EP      4.5338e+01   0.0000e+00  -1.6341e+01   0.0000e+00   1.6083e+01   1.0000e-01
   10  00:00:00   6.8814e+01      2          4.5169e+01   0.0000e+00  -1.5642e+01   0.0000e+00   9.0990e+00   1.0000e-01
   14  00:00:01   6.7264e+01      3  SN      4.5060e+01   0.0000e+00  -1.3945e+01   0.0000e+00   6.1061e+00   1.0000e-01
   14  00:00:01   6.7264e+01      4  BP      4.5060e+01   0.0000e+00  -1.3945e+01   0.0000e+00   6.1061e+00   1.0000e-01
   20  00:00:01   6.4071e+01      5          4.4613e+01   0.0000e+00  -7.7568e+00   0.0000e+00   1.4339e+00   1.0000e-01
   30  00:00:02   6.0000e+01      6          4.2378e+01   0.0000e+00  -2.0270e+00   0.0000e+00   6.5236e-02   1.0000e-01
   39  00:00:02   5.1303e+01      7  EP      3.6270e+01   0.0000e+00  -6.6304e-01   0.0000e+00  -8.4964e-04   1.0000e-01

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:03   7.1850e+01      8  EP      4.5338e+01   0.0000e+00  -1.6341e+01   0.0000e+00   1.6083e+01   1.0000e-01
   10  00:00:03   7.4358e+01      9          4.5472e+01   0.0000e+00  -1.3002e+01   0.0000e+00   2.2974e+01   1.0000e-01
   20  00:00:03   7.6206e+01     10          4.5619e+01   0.0000e+00  -1.0293e+00   0.0000e+00   2.8661e+01   1.0000e-01
   30  00:00:04   7.4767e+01     11          4.5688e+01   0.0000e+00   1.1756e+01   0.0000e+00   2.3864e+01   1.0000e-01
   39  00:00:07   7.1605e+01     12  SN      4.5710e+01   0.0000e+00   1.6032e+01   0.0000e+00   1.4736e+01   1.0000e-01
   39  00:00:07   7.1605e+01     13  BP      4.5710e+01   0.0000e+00   1.6032e+01   0.0000e+00   1.4736e+01   1.0000e-01
   40  00:00:07   7.1047e+01     14          4.5715e+01   0.0000e+00   1.6043e+01   0.0000e+00   1.3288e+01   1.0000e-01
   50  00:00:08   6.7087e+01     15          4.5859e+01   0.0000e+00   1.1429e+01   0.0000e+00   4.0744e+00   1.0000e-01
   60  00:00:08   6.7304e+01     16          4.7510e+01   0.0000e+00   2.7548e+00   0.0000e+00   2.3559e-01   1.0000e-01
   70  00:00:09   7.2264e+01     17          5.1088e+01   0.0000e+00   1.0446e+00   0.0000e+00   4.4967e-02   1.0000e-01
   73  00:00:09   7.6947e+01     18  EP      5.4405e+01   0.0000e+00   6.6269e-01   0.0000e+00   2.2322e-02   1.0000e-01

 Run='sweepseps2.ep': Continue equilibria with varied omega at eps equal to 5.000000e-01.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          8.00e-14  8.86e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:00   8.8631e+01      1  EP      4.5338e+01   0.0000e+00  -3.9718e+01   0.0000e+00   1.7164e+01   5.0000e-01
   10  00:00:00   7.8907e+01      2          4.4842e+01   0.0000e+00  -3.2250e+01   0.0000e+00   7.8888e+00   5.0000e-01
   11  00:00:01   7.7406e+01      3  SN      4.4753e+01   0.0000e+00  -3.0766e+01   0.0000e+00   6.8072e+00   5.0000e-01
   11  00:00:01   7.7406e+01      4  BP      4.4753e+01   0.0000e+00  -3.0766e+01   0.0000e+00   6.8072e+00   5.0000e-01
   20  00:00:01   6.1003e+01      5          4.2127e+01   0.0000e+00  -9.2614e+00   0.0000e+00   2.7644e-01   5.0000e-01
   30  00:00:02   5.1756e+01      6          3.6439e+01   0.0000e+00  -3.3767e+00   0.0000e+00  -2.9906e-03   5.0000e-01
   31  00:00:02   5.1510e+01      7  EP      3.6270e+01   0.0000e+00  -3.3138e+00   0.0000e+00  -3.9698e-03   5.0000e-01

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:02   8.8631e+01      8  EP      4.5338e+01   0.0000e+00  -3.9718e+01   0.0000e+00   1.7164e+01   5.0000e-01
   10  00:00:04   9.7345e+01      9          4.5741e+01   0.0000e+00  -4.2266e+01   0.0000e+00   2.9313e+01   5.0000e-01
   20  00:00:04   1.0972e+02     10          4.6350e+01   0.0000e+00  -3.0721e+01   0.0000e+00   5.4102e+01   5.0000e-01
   24  00:00:05   1.1268e+02     11  SN      4.6536e+01   0.0000e+00  -1.9906e+01   0.0000e+00   6.1538e+01   5.0000e-01
   24  00:00:05   1.1268e+02     12  BP      4.6536e+01   0.0000e+00  -1.9906e+01   0.0000e+00   6.1538e+01   5.0000e-01
   30  00:00:05   1.1431e+02     13          4.6739e+01   0.0000e+00   1.9923e+00   0.0000e+00   6.5914e+01   5.0000e-01
   37  00:00:06   1.1126e+02     14  FP      4.6815e+01   0.0000e+00   2.5230e+01   0.0000e+00   5.7974e+01   5.0000e-01
   37  00:00:06   1.1126e+02     15  SN      4.6815e+01   0.0000e+00   2.5230e+01   0.0000e+00   5.7974e+01   5.0000e-01
   40  00:00:06   1.0817e+02     16          4.6801e+01   0.0000e+00   3.3233e+01   0.0000e+00   5.0556e+01   5.0000e-01
   50  00:00:07   9.4405e+01     17          4.6646e+01   0.0000e+00   4.0884e+01   0.0000e+00   2.4672e+01   5.0000e-01
   57  00:00:07   8.4334e+01     18  SN      4.6580e+01   0.0000e+00   3.5173e+01   0.0000e+00   1.2212e+01   5.0000e-01
   57  00:00:08   8.4334e+01     19  FP      4.6580e+01   0.0000e+00   3.5173e+01   0.0000e+00   1.2212e+01   5.0000e-01
   60  00:00:08   7.8672e+01     20          4.6623e+01   0.0000e+00   2.9487e+01   0.0000e+00   7.1616e+00   5.0000e-01
   70  00:00:08   7.0627e+01     21          4.9377e+01   0.0000e+00   7.4628e+00   0.0000e+00   4.1133e-01   5.0000e-01
   79  00:00:09   7.7085e+01     22  EP      5.4405e+01   0.0000e+00   3.3148e+00   0.0000e+00   1.1198e-01   5.0000e-01

 Run='sweepseps3.ep': Continue equilibria with varied omega at eps equal to 1.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          1.13e-13  1.02e+02    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:00   1.0150e+02      1  EP      4.5338e+01   0.0000e+00  -5.2555e+01   0.0000e+00   1.8253e+01   1.0000e+00
   10  00:00:00   8.7523e+01      2          4.4589e+01   0.0000e+00  -4.2164e+01   0.0000e+00   7.9790e+00   1.0000e+00
   11  00:00:01   8.6800e+01      3  SN      4.4545e+01   0.0000e+00  -4.1531e+01   0.0000e+00   7.5837e+00   1.0000e+00
   11  00:00:01   8.6800e+01      4  BP      4.4545e+01   0.0000e+00  -4.1531e+01   0.0000e+00   7.5837e+00   1.0000e+00
   20  00:00:01   6.2248e+01      5          4.1396e+01   0.0000e+00  -1.4939e+01   0.0000e+00   3.4828e-01   1.0000e+00
   29  00:00:02   5.2151e+01      6  EP      3.6270e+01   0.0000e+00  -6.6192e+00   0.0000e+00  -6.2126e-03   1.0000e+00

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:02   1.0150e+02      7  EP      4.5338e+01   0.0000e+00  -5.2555e+01   0.0000e+00   1.8253e+01   1.0000e+00
   10  00:00:02   1.1396e+02      8          4.5942e+01   0.0000e+00  -5.7760e+01   0.0000e+00   3.2343e+01   1.0000e+00
   20  00:00:03   1.3334e+02      9  SN      4.6901e+01   0.0000e+00  -4.8797e+01   0.0000e+00   6.5638e+01   1.0000e+00
   20  00:00:03   1.3334e+02     10  BP      4.6901e+01   0.0000e+00  -4.8797e+01   0.0000e+00   6.5638e+01   1.0000e+00
   20  00:00:03   1.3377e+02     11          4.6923e+01   0.0000e+00  -4.8125e+01   0.0000e+00   6.6546e+01   1.0000e+00
   30  00:00:03   1.4335e+02     12          4.7588e+01   0.0000e+00  -7.5891e+00   0.0000e+00   8.9173e+01   1.0000e+00
   39  00:00:04   1.3885e+02     13  FP      4.7783e+01   0.0000e+00   3.4986e+01   0.0000e+00   7.8308e+01   1.0000e+00
   39  00:00:04   1.3885e+02     14  SN      4.7783e+01   0.0000e+00   3.4986e+01   0.0000e+00   7.8308e+01   1.0000e+00
   40  00:00:04   1.3748e+02     15          4.7781e+01   0.0000e+00   3.9022e+01   0.0000e+00   7.5126e+01   1.0000e+00
   50  00:00:05   1.1847e+02     16          4.7558e+01   0.0000e+00   5.6828e+01   0.0000e+00   3.9062e+01   1.0000e+00
   60  00:00:06   9.4802e+01     17          4.7320e+01   0.0000e+00   4.5782e+01   0.0000e+00   1.2572e+01   1.0000e+00
   61  00:00:06   9.4298e+01     18  SN      4.7320e+01   0.0000e+00   4.5363e+01   0.0000e+00   1.2192e+01   1.0000e+00
   61  00:00:06   9.4297e+01     19  FP      4.7320e+01   0.0000e+00   4.5362e+01   0.0000e+00   1.2192e+01   1.0000e+00
   70  00:00:07   7.4074e+01     20          4.8518e+01   0.0000e+00   1.9666e+01   0.0000e+00   1.4874e+00   1.0000e+00
   80  00:00:08   7.6899e+01     21          5.3916e+01   0.0000e+00   7.0189e+00   0.0000e+00   2.4627e-01   1.0000e+00
   81  00:00:08   7.7519e+01     22  EP      5.4405e+01   0.0000e+00   6.6381e+00   0.0000e+00   2.2626e-01   1.0000e+00

Calculate FRC in physical domain at epsilon 1.000000e-01
Calculate FRC in physical domain at epsilon 5.000000e-01
Calculate FRC in physical domain at epsilon 1

FRCs in reduced coordinates for distinct forcing amplitudes

As is evident, only the second mode, which is in resonance with the forcing frequency, is excited in this case.

FRCs in full coordinates for distinct forcing amplitudes

Check the convergence

We check for the convergence of the FRC with increasing orders

sol = ep_read_solution('sweepseps1.ep',1);
epsilon = sol.p(2);
kappas = [1; -1];
coeffs = [fext fext]/2;
DS.add_forcing(coeffs, kappas, epsilon);
omegaRange = [0.95 1.1]*imag(D(3));
start = tic;
FRC_O3 = S.SSM_isol2ep('isol-3', resonant_modes, order-2, mFreq,...
    'freq', omegaRange, outdof, {sol.p,sol.x});
timings.FRC_O3 = toc(start);

start = tic;
FRC_O5 = S.SSM_isol2ep('isol-5', resonant_modes, order, mFreq,...
    'freq', omegaRange, outdof, {sol.p,sol.x});
timings.FRC_O5 = toc(start);

start = tic;
FRC_O7 = S.SSM_isol2ep('isol-7', resonant_modes, order+2, mFreq,...
    'freq', omegaRange, outdof, {sol.p,sol.x});
timings.FRC_O7 = toc(start);

start = tic;
FRC_O9 = S.SSM_isol2ep('isol-9', resonant_modes, order+4, mFreq,...
    'freq', omegaRange, outdof, {sol.p,sol.x});
timings.FRC_O9 = toc(start);
The master subspace contains the following eigenvalues
 
lambda1 == - 0.0366857 + 22.6627i
 
lambda2 == (-0.0366857) - 22.6627i
 
lambda3 == - 0.146825 + 45.3379i
 
lambda4 == (-0.146825) - 45.3379i
 
(near) outer resonance detected for the following combinations of master eigenvalues
 They are in resonance with the following eigenvalues of the slave subspace 
 
1*lambda1 + 0*lambda2 + 1*lambda3 + 0*lambda4 == - 0.385295 + 73.4437i
 
0*lambda1 + 1*lambda2 + 2*lambda3 + 0*lambda4 == - 0.385295 + 73.4437i
 
.
.
.

sigma_out = 42
(near) inner resonance detected for the following combination of master eigenvalues:
 
0*lambda1 + 1*lambda2 + 1*lambda3 + 0*lambda4 == lambda1
 
1*lambda1 + 0*lambda2 + 1*lambda3 + 1*lambda4 == lambda1
 
.
.
.

sigma_in = 42

FRCs at order 3


Due to (near) outer resonance, the exisitence of the manifold is questionable and the underlying computation may suffer.
Attempting manifold computation
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 3.29E-01 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 5.95E-01 MB

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.


 Run='isol-3.ep': Continue equilibria along primary branch.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          6.30e-14  7.18e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:00   7.1802e+01      1  EP      4.5338e+01   0.0000e+00  -1.6328e+01   0.0000e+00   1.5988e+01   1.0000e-01
   10  00:00:01   6.8780e+01      2          4.5167e+01   0.0000e+00  -1.5607e+01   0.0000e+00   9.0349e+00   1.0000e-01
   14  00:00:01   6.7268e+01      3  SN      4.5061e+01   0.0000e+00  -1.3949e+01   0.0000e+00   6.1162e+00   1.0000e-01
   14  00:00:01   6.7268e+01      4  BP      4.5061e+01   0.0000e+00  -1.3949e+01   0.0000e+00   6.1162e+00   1.0000e-01
   20  00:00:01   6.4049e+01      5          4.4607e+01   0.0000e+00  -7.7050e+00   0.0000e+00   1.4125e+00   1.0000e-01
   27  00:00:02   6.1026e+01      6  EP      4.3071e+01   0.0000e+00  -2.6411e+00   0.0000e+00   1.2521e-01   1.0000e-01

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:02   7.1802e+01      7  EP      4.5338e+01   0.0000e+00  -1.6328e+01   0.0000e+00   1.5988e+01   1.0000e-01
   10  00:00:02   7.4298e+01      8          4.5473e+01   0.0000e+00  -1.3019e+01   0.0000e+00   2.2864e+01   1.0000e-01
   20  00:00:03   7.6144e+01      9          4.5623e+01   0.0000e+00  -1.0762e+00   0.0000e+00   2.8571e+01   1.0000e-01
   30  00:00:03   7.4726e+01     10          4.5691e+01   0.0000e+00   1.1723e+01   0.0000e+00   2.3810e+01   1.0000e-01
   39  00:00:04   7.1719e+01     11  SN      4.5711e+01   0.0000e+00   1.5984e+01   0.0000e+00   1.5062e+01   1.0000e-01
   39  00:00:04   7.1719e+01     12  BP      4.5711e+01   0.0000e+00   1.5984e+01   0.0000e+00   1.5062e+01   1.0000e-01
   40  00:00:04   7.1037e+01     13          4.5717e+01   0.0000e+00   1.6025e+01   0.0000e+00   1.3278e+01   1.0000e-01
   50  00:00:05   6.7096e+01     14          4.5859e+01   0.0000e+00   1.1452e+01   0.0000e+00   4.0949e+00   1.0000e-01
   60  00:00:05   6.7295e+01     15          4.7504e+01   0.0000e+00   2.7632e+00   0.0000e+00   2.3689e-01   1.0000e-01
   69  00:00:06   7.0554e+01     16  EP      4.9872e+01   0.0000e+00   1.3241e+00   0.0000e+00   6.6106e-02   1.0000e-01


  

FRC in parametrisation space:

FRC in physical space:

FRCs at order 5


Due to (near) outer resonance, the exisitence of the manifold is questionable and the underlying computation may suffer.
Attempting manifold computation
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 3.31E-01 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 5.97E-01 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 1.23E+00 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 2.21E+00 MB

Equation solved at initial point.

fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.


 Run='isol-5.ep': Continue equilibria along primary branch.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          4.04e-14  7.19e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:00   7.1850e+01      1  EP      4.5338e+01   0.0000e+00  -1.6341e+01   0.0000e+00   1.6083e+01   1.0000e-01
   10  00:00:00   6.8814e+01      2          4.5169e+01   0.0000e+00  -1.5642e+01   0.0000e+00   9.0990e+00   1.0000e-01
   14  00:00:00   6.7264e+01      3  SN      4.5060e+01   0.0000e+00  -1.3945e+01   0.0000e+00   6.1061e+00   1.0000e-01
   14  00:00:00   6.7264e+01      4  BP      4.5060e+01   0.0000e+00  -1.3945e+01   0.0000e+00   6.1061e+00   1.0000e-01
   20  00:00:01   6.4071e+01      5          4.4613e+01   0.0000e+00  -7.7568e+00   0.0000e+00   1.4339e+00   1.0000e-01
   27  00:00:01   6.1026e+01      6  EP      4.3071e+01   0.0000e+00  -2.6411e+00   0.0000e+00   1.2521e-01   1.0000e-01

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:01   7.1850e+01      7  EP      4.5338e+01   0.0000e+00  -1.6341e+01   0.0000e+00   1.6083e+01   1.0000e-01
   10  00:00:01   7.4358e+01      8          4.5472e+01   0.0000e+00  -1.3002e+01   0.0000e+00   2.2974e+01   1.0000e-01
   20  00:00:02   7.6206e+01      9          4.5619e+01   0.0000e+00  -1.0293e+00   0.0000e+00   2.8661e+01   1.0000e-01
   30  00:00:03   7.4767e+01     10          4.5688e+01   0.0000e+00   1.1756e+01   0.0000e+00   2.3864e+01   1.0000e-01
   39  00:00:04   7.1605e+01     11  SN      4.5710e+01   0.0000e+00   1.6032e+01   0.0000e+00   1.4736e+01   1.0000e-01
   39  00:00:04   7.1605e+01     12  BP      4.5710e+01   0.0000e+00   1.6032e+01   0.0000e+00   1.4736e+01   1.0000e-01
   40  00:00:04   7.1047e+01     13          4.5715e+01   0.0000e+00   1.6043e+01   0.0000e+00   1.3288e+01   1.0000e-01
   50  00:00:04   6.7087e+01     14          4.5859e+01   0.0000e+00   1.1429e+01   0.0000e+00   4.0744e+00   1.0000e-01
   60  00:00:05   6.7304e+01     15          4.7510e+01   0.0000e+00   2.7548e+00   0.0000e+00   2.3559e-01   1.0000e-01
   69  00:00:06   7.0554e+01     16  EP      4.9872e+01   0.0000e+00   1.3241e+00   0.0000e+00   6.6106e-02   1.0000e-01

FRC in parametrisation space:

FRC in physical space:

FRCs at order 7


Due to (near) outer resonance, the exisitence of the manifold is questionable and the underlying computation may suffer.
Attempting manifold computation
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 3.35E-01 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 6.01E-01 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 1.23E+00 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 2.21E+00 MB
Manifold computation time at order 6 = 00:00:01
Estimated memory usage at order  6 = 4.02E+00 MB
Manifold computation time at order 7 = 00:00:04
Estimated memory usage at order  7 = 6.64E+00 MB

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.


 Run='isol-7.ep': Continue equilibria along primary branch.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          1.73e-13  7.18e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:00   7.1849e+01      1  EP      4.5338e+01   0.0000e+00  -1.6341e+01   0.0000e+00   1.6080e+01   1.0000e-01
   10  00:00:00   6.8813e+01      2          4.5169e+01   0.0000e+00  -1.5641e+01   0.0000e+00   9.0977e+00   1.0000e-01
   14  00:00:01   6.7264e+01      3  SN      4.5060e+01   0.0000e+00  -1.3945e+01   0.0000e+00   6.1062e+00   1.0000e-01
   14  00:00:01   6.7264e+01      4  BP      4.5060e+01   0.0000e+00  -1.3945e+01   0.0000e+00   6.1062e+00   1.0000e-01
   20  00:00:01   6.4071e+01      5          4.4613e+01   0.0000e+00  -7.7561e+00   0.0000e+00   1.4336e+00   1.0000e-01
   27  00:00:01   6.1026e+01      6  EP      4.3071e+01   0.0000e+00  -2.6411e+00   0.0000e+00   1.2521e-01   1.0000e-01

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:01   7.1849e+01      7  EP      4.5338e+01   0.0000e+00  -1.6341e+01   0.0000e+00   1.6080e+01   1.0000e-01
   10  00:00:02   7.4356e+01      8          4.5472e+01   0.0000e+00  -1.3003e+01   0.0000e+00   2.2970e+01   1.0000e-01
   20  00:00:02   7.6203e+01      9          4.5620e+01   0.0000e+00  -1.0297e+00   0.0000e+00   2.8657e+01   1.0000e-01
   30  00:00:03   7.4765e+01     10          4.5688e+01   0.0000e+00   1.1757e+01   0.0000e+00   2.3860e+01   1.0000e-01
   39  00:00:03   7.1607e+01     11  SN      4.5710e+01   0.0000e+00   1.6031e+01   0.0000e+00   1.4742e+01   1.0000e-01
   39  00:00:03   7.1607e+01     12  BP      4.5710e+01   0.0000e+00   1.6031e+01   0.0000e+00   1.4742e+01   1.0000e-01
   40  00:00:03   7.1046e+01     13          4.5715e+01   0.0000e+00   1.6042e+01   0.0000e+00   1.3286e+01   1.0000e-01
   50  00:00:04   6.7087e+01     14          4.5859e+01   0.0000e+00   1.1430e+01   0.0000e+00   4.0745e+00   1.0000e-01
   60  00:00:04   6.7304e+01     15          4.7510e+01   0.0000e+00   2.7548e+00   0.0000e+00   2.3559e-01   1.0000e-01
   69  00:00:05   7.0554e+01     16  EP      4.9872e+01   0.0000e+00   1.3241e+00   0.0000e+00   6.6106e-02   1.0000e-01
  

FRC in parametrisation space:

FRC in physical space:

FRCs at order 9


Due to (near) outer resonance, the exisitence of the manifold is questionable and the underlying computation may suffer.
Attempting manifold computation
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 3.41E-01 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 6.07E-01 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 1.24E+00 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 2.22E+00 MB
Manifold computation time at order 6 = 00:00:01
Estimated memory usage at order  6 = 4.03E+00 MB
Manifold computation time at order 7 = 00:00:03
Estimated memory usage at order  7 = 6.64E+00 MB
Manifold computation time at order 8 = 00:00:12
Estimated memory usage at order  8 = 1.08E+01 MB
Manifold computation time at order 9 = 00:00:31
Estimated memory usage at order  9 = 1.66E+01 MB

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.


 Run='isol-9.ep': Continue equilibria along primary branch.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          6.19e-14  7.18e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:00   7.1849e+01      1  EP      4.5338e+01   0.0000e+00  -1.6341e+01   0.0000e+00   1.6080e+01   1.0000e-01
   10  00:00:00   6.8813e+01      2          4.5169e+01   0.0000e+00  -1.5641e+01   0.0000e+00   9.0978e+00   1.0000e-01
   14  00:00:01   6.7264e+01      3  SN      4.5060e+01   0.0000e+00  -1.3945e+01   0.0000e+00   6.1062e+00   1.0000e-01
   14  00:00:01   6.7264e+01      4  BP      4.5060e+01   0.0000e+00  -1.3945e+01   0.0000e+00   6.1062e+00   1.0000e-01
   20  00:00:02   6.4071e+01      5          4.4613e+01   0.0000e+00  -7.7561e+00   0.0000e+00   1.4336e+00   1.0000e-01
   27  00:00:03   6.1026e+01      6  EP      4.3071e+01   0.0000e+00  -2.6411e+00   0.0000e+00   1.2521e-01   1.0000e-01

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:03   7.1849e+01      7  EP      4.5338e+01   0.0000e+00  -1.6341e+01   0.0000e+00   1.6080e+01   1.0000e-01
   10  00:00:04   7.4356e+01      8          4.5472e+01   0.0000e+00  -1.3003e+01   0.0000e+00   2.2970e+01   1.0000e-01
   20  00:00:04   7.6203e+01      9          4.5620e+01   0.0000e+00  -1.0297e+00   0.0000e+00   2.8657e+01   1.0000e-01
   30  00:00:05   7.4765e+01     10          4.5688e+01   0.0000e+00   1.1757e+01   0.0000e+00   2.3860e+01   1.0000e-01
   39  00:00:06   7.1607e+01     11  SN      4.5710e+01   0.0000e+00   1.6031e+01   0.0000e+00   1.4742e+01   1.0000e-01
   39  00:00:06   7.1607e+01     12  BP      4.5710e+01   0.0000e+00   1.6031e+01   0.0000e+00   1.4742e+01   1.0000e-01
   40  00:00:06   7.1046e+01     13          4.5715e+01   0.0000e+00   1.6042e+01   0.0000e+00   1.3286e+01   1.0000e-01
   50  00:00:07   6.7087e+01     14          4.5859e+01   0.0000e+00   1.1430e+01   0.0000e+00   4.0745e+00   1.0000e-01
   60  00:00:07   6.7304e+01     15          4.7510e+01   0.0000e+00   2.7548e+00   0.0000e+00   2.3559e-01   1.0000e-01
   69  00:00:08   7.0554e+01     16  EP      4.9872e+01   0.0000e+00   1.3241e+00   0.0000e+00   6.6106e-02   1.0000e-01



FRC in parametrisation space:

FRC in physical space:

Compare FRCs at different orders to check for convergence

FRCs = {FRC_O3,FRC_O5,FRC_O7,FRC_O9};
thm = struct();
thm.SN = {'LineStyle', 'none', 'LineWidth', 2, ...
  'Color', 'cyan', 'Marker', 'o', 'MarkerSize', 8, 'MarkerEdgeColor', ...
  'cyan', 'MarkerFaceColor', 'white'};
thm.HB = {'LineStyle', 'none', 'LineWidth', 2, ...
  'Color', 'black', 'Marker', 's', 'MarkerSize', 8, 'MarkerEdgeColor', ...
  'black', 'MarkerFaceColor', 'white'};
color = {'r','k','m','b','g'};
figure;
ax1 = gca;
for k=1:numel(FRCs)
    FRC = FRCs{k};
    SNidx = FRC.SNidx;
    HBidx = FRC.HBidx;
    FRC.st = double(FRC.st);
    FRC.st(HBidx) = nan;
    FRC.st(SNidx) = nan;
    % color
    ST = cell(2,1);
    ST{1} = {[color{k},'--'],'LineWidth',1.5}; % unstable
    ST{2} = {[color{k},'-'],'LineWidth',1.5};  % stable
    legs = ['SSM-$\mathcal{O}(',num2str(2*k+1),')$-unstable'];
    legu = ['SSM-$\mathcal{O}(',num2str(2*k+1),')$-stable'];
    hold(ax1,'on');
    plot_stab_lines(FRC.om,FRC.Aout_frc(:,1),FRC.st,ST,legs,legu);
    SNfig = plot(FRC.om(SNidx),FRC.Aout_frc(SNidx,1),thm.SN{:});
    set(get(get(SNfig,'Annotation'),'LegendInformation'),...
    'IconDisplayStyle','off');
    HBfig = plot(FRC.om(HBidx),FRC.Aout_frc(HBidx,1),thm.HB{:});
    set(get(get(HBfig,'Annotation'),'LegendInformation'),...
    'IconDisplayStyle','off');
    xlabel('$\Omega$','Interpreter','latex');
    ylabel('$||u_1||_{\infty}$','Interpreter','latex');
    set(gca,'FontSize',14);
    grid on; axis tight;
end

Secondary branches

We observed the FRC converges well at O(5) approximation. Next we perform branch switching of branch points observed in this continuation run.

bd = coco_bd_read('isol-5.ep');
BPlabs = coco_bd_labs(bd, 'BP');
set(S.contOptions, 'PtMX', [100,0]);
S.SSM_BP2ep('o5-bp1','isol-5',BPlabs(1),'freq',omegaRange,outdof);
 Run='o5-bp1.ep': Continue equilibria along secondary branch from label 4 of run isol-5.

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:00   6.7264e+01      1  EP      4.5060e+01   0.0000e+00  -1.3945e+01   0.0000e+00   6.1061e+00   1.0000e-01
    1  00:00:00   6.7264e+01      2  BP      4.5060e+01  -1.2129e-08  -1.3945e+01  -3.6018e-08   6.1061e+00   1.0000e-01
    1  00:00:00   6.7264e+01      3  FP      4.5060e+01  -5.0299e-03  -1.3945e+01  -1.4936e-02   6.1061e+00   1.0000e-01
   10  00:00:00   7.1489e+01      4          4.5138e+01  -5.6239e+00  -1.5238e+01  -1.3442e+01   8.5682e+00   1.0000e-01
   20  00:00:00   8.2500e+01      5          4.5345e+01  -1.6405e+01  -1.4853e+01  -2.2865e+01   1.8287e+01   1.0000e-01
   30  00:00:01   8.9415e+01      6          4.5507e+01  -2.6712e+01  -5.8219e+00  -2.2141e+01   2.6249e+01   1.0000e-01
   40  00:00:01   9.0509e+01      7          4.5601e+01  -3.3631e+01   7.5731e+00  -1.4543e+01   2.4831e+01   1.0000e-01
   50  00:00:01   8.6057e+01      8          4.5647e+01  -3.4567e+01   1.4129e+01  -3.8929e+00   1.4477e+01   1.0000e-01
   60  00:00:02   8.1742e+01      9          4.5800e+01  -3.1602e+01   1.0487e+01   1.0082e+01   5.7399e+00   1.0000e-01
   70  00:00:02   8.0355e+01     10          4.5903e+01  -2.3765e+01   9.8821e+00   2.0860e+01   4.8742e+00   1.0000e-01
   71  00:00:02   8.0239e+01     11  SN      4.5903e+01  -2.3336e+01   9.9355e+00   2.1093e+01   4.8806e+00   1.0000e-01
   71  00:00:02   8.0239e+01     12  FP      4.5903e+01  -2.3336e+01   9.9355e+00   2.1093e+01   4.8806e+00   1.0000e-01
   80  00:00:02   7.7115e+01     13          4.5859e+01  -1.4922e+01   1.1646e+01   2.1947e+01   5.5147e+00   1.0000e-01
   90  00:00:03   7.3023e+01     14          4.5759e+01  -7.3759e+00   1.4747e+01   1.4901e+01   8.8537e+00   1.0000e-01
   97  00:00:03   7.1605e+01     15  FP      4.5710e+01  -1.6983e-05   1.6032e+01   3.2550e-05   1.4736e+01   1.0000e-01
   97  00:00:03   7.1605e+01     16  BP      4.5710e+01   1.1378e-06   1.6032e+01  -2.0113e-06   1.4736e+01   1.0000e-01
  100  00:00:03   7.1646e+01     17  EP      4.5713e+01   1.9259e+00   1.6045e+01  -3.7193e+00   1.4209e+01   1.0000e-01

FRC in parametrisation space:

FRC in physical space:

We also perform branch switching at the other BP point. It is expected that the results are the same as the above.

S.SSM_BP2ep('o5-bp2','isol-5',BPlabs(2),'freq',omegaRange,outdof);

 Run='o5-bp2.ep': Continue equilibria along secondary branch from label 12 of run isol-5.

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Imz1         Imz2          eps
    0  00:00:00   7.1605e+01      1  EP      4.5710e+01   0.0000e+00   1.6032e+01   0.0000e+00   1.4736e+01   1.0000e-01
    1  00:00:00   7.1605e+01      2  SN      4.5710e+01   1.4569e-04   1.6032e+01  -2.7785e-04   1.4736e+01   1.0000e-01
    1  00:00:00   7.1605e+01      3  FP      4.5710e+01   6.6439e-03   1.6032e+01  -1.2671e-02   1.4736e+01   1.0000e-01
   10  00:00:01   7.1950e+01      4          4.5725e+01   4.5192e+00   1.5840e+01  -9.1033e+00   1.1972e+01   1.0000e-01
   20  00:00:02   7.7255e+01      5          4.5862e+01   1.5220e+01   1.1561e+01  -2.2038e+01   5.4666e+00   1.0000e-01
   30  00:00:03   8.0239e+01      6  FP      4.5903e+01   2.3336e+01   9.9355e+00  -2.1093e+01   4.8806e+00   1.0000e-01
   30  00:00:03   8.0239e+01      7  SN      4.5903e+01   2.3336e+01   9.9355e+00  -2.1093e+01   4.8806e+00   1.0000e-01
   30  00:00:03   8.0349e+01      8          4.5903e+01   2.3746e+01   9.8844e+00  -2.0871e+01   4.8744e+00   1.0000e-01
   40  00:00:03   8.1671e+01      9          4.5816e+01   3.1180e+01   1.0218e+01  -1.1358e+01   5.5085e+00   1.0000e-01
   50  00:00:03   8.5434e+01     10          4.5654e+01   3.4379e+01   1.4132e+01   2.7190e+00   1.3272e+01   1.0000e-01
   60  00:00:04   9.0281e+01     11          4.5607e+01   3.3986e+01   8.6697e+00   1.3579e+01   2.4098e+01   1.0000e-01
   70  00:00:04   8.9817e+01     12          4.5520e+01   2.7638e+01  -4.4945e+00   2.1636e+01   2.6633e+01   1.0000e-01
   80  00:00:05   8.3252e+01     13          4.5361e+01   1.7297e+01  -1.4439e+01   2.3121e+01   1.9122e+01   1.0000e-01
   90  00:00:06   7.2998e+01     14          4.5165e+01   6.9785e+00  -1.5585e+01   1.5508e+01   9.6126e+00   1.0000e-01
   98  00:00:06   6.7264e+01     15  FP      4.5060e+01   8.6889e-05  -1.3945e+01   2.6264e-04   6.1061e+00   1.0000e-01
   98  00:00:06   6.7264e+01     16  BP      4.5060e+01  -3.5952e-06  -1.3945e+01  -6.0548e-06   6.1061e+00   1.0000e-01
  100  00:00:06   6.8688e+01     17  EP      4.5087e+01  -2.8806e+00  -1.4423e+01  -7.9272e+00   6.8622e+00   1.0000e-01

FRC in parametrisation space:

FRC in physical space:

FRC with both solution branches

Now we are ready to put two branches of solution at the same figure. We collect the data of the two FRCs and plot them on top of each other (please refer to the example in the toolbox for the code).